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Abstract-The theory outlined in Part I is applied to the problem of a cantilever beam struck transversely at
any point by a mass which subsequently adheres to the beam. In the subsequent motion, slope and velocity
discontinuities propagate outwards from the point of impact. Solutions for the velocity and dellection of the
various segments of the beam are obtained for the case of linear strain-hardening, and simpler approximate
solutions are derived for the case of low impact velocity and/or slight strain-hardening. The discontinuity
propagating towards the free end of the beam always comes to rest before it reaches this end, but for
sufficiently high values of impact mass and velocity, and a strain-hardening parameter, one or more
reflections of the discontinuity may occur at the fixed end of the beam and at the point of impact.

I. INTRODUCTION

In this paper we apply the theory of ideal fibre-reinforced rigid-plastic beams to the problem of
a cantilever beam struck by a mass at any point. The special case of a cantilever beam struck at
its tip was solved in Part II [2] and has also been considered by Jones [3] for the case of a long
beam and linear strain-hardening.

For consistency of notation with Parts 1[1] and 11[2], it is again supposed that the beam
initially lies along the X-axis from X =- L to X =L. The end X = -Lis constrained so as to
be fixed in position and unable to rotate, and the end X =L is free. At time T =0 the beam is
struck at the point X =Xo=xoL by a mass 2M moving with speed Vo in the Y -direction. The
mass subsequently adheres to the beam. We seek solutions in which, for some period after the
impact, discontinuities in slope and velocity propagate outwards from the point of impact. At a
time T during this interval, the rightward-moving discontinuity is at Xo+ A(T), and the
leftward-moving discontinuity is at Xo- B(T). The segment - L ... X < Xo- B(T) is at rest; the
segment Xo- B(T) <X <Xo+A(T) moves, with the mass, as a rigid body with speed V" and
the segment Xo+A(T) < X < L moves as a rigid body with speed V2. The assumed configura
tion shortly after the impact is illustrated in Fig. 1. In Fig. 2 we show, for the case of linear
strain-hardening, the trajectories of the propagating discontinuities in the (x, t) plane where, as
in Parts I and II, x =XILand t = TVolL.

2. SOLUTION FOR wi <(Jat

The governing equations are the equations of motion of the segments Xo- B(T) <x <
Xo+A(T) and Xo+A(T) < X < L, and the kinematic and dynamic jump conditions at X =
Xo- B(T) and X = Xo+A(T). It is straight-forward to write these equations down for a general
strain-hardening relation, or for any special relation such as that given by (2.8) of Part I.
However, unlike the cases discussed in Parts I and II, we have been unable to obtain analytical
solutions of these equations for non-linear strain-hardening relations (except in the case of the
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Fig. I. Impact of a cantilever beam. Assumed form of deformation shortly after impact.
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Fig. 2. Impact of a cantilever beam. Trajectories of the discontinuities in the (x, I) plane for linear
strain-hardening.

cantilever beam struck at its tip, which is equivalent to the problem discussed in Part II with
Xo= 0). We shall therefore consider only linear strain-hardening, so that

(2.1)

where we employ the same notation as in Parts I and II. We do, however, note the following
relation, which is valid for any strain-hardening rule, and expresses balance ofIinear momen
tum of the mass and beam,

m(A +B)V1+m(L- Xo- A)V2 + 2M(VI - Vo) = -QoT, (2.2)

where Qo here denotes the initial yield shear force.
We employ the non-dimensional variables defined in Part I (eqns (2.14) and (2.16), with

n = 1), together with

b = BIL, VI::: Vi/Vo, V2::: V2IVo. (2.3)

We also denote the value of 'Y in the deformed segment, which moves as a rigid body, by

'Y = {f(X) Xo < x < Xo+ a(t),
hl(x) Xo- b(t) <x < Xo.

(2.4)

For linear strain-hardening, the discontinuities propagate with constant speed, so that

a::: b = wtl{3 (2.5)

in this stage of the deformation.
The equations of motion of Xo - b(t) < x < Xo +a(t) and of xo +a(t) < x < I are

p2(a +b +2a)v. = -2 - w2{-f(xo+ a) +hl(xo- b)},

(32(l- Xo - a)v2::: l.

(2.6)

(2.7)

When a is given by (2.5), the kinematic and dynamic jump conditions at x = xo+ a(t) both
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reduce to

and similarly the jump conditions at x = Xo - b(t) both become

The initial conditions are

a = 0, b = 0, VI = 1, V2 = 0 at t = O.

Adding (2.6}-(2.9), integrating and introducing the initial conditions gives

w~{(a + b +2a)vl +(1- xo- a)v2} = 2w~a - b,
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(2.8)

(2.9)

(2.10)

(2.11)

where we have used (2.5) to express t in terms of b, because it is convenient to use b (or a)
rather than t as the independent variable. Equation (2.11) is equivalent to (2.2).

By introducing (2.5) in (2.7), integrating and using the initial conditions, there follows

1-xo
W~V2 = log 1 b'-Xo-

Hence, from (2.5), (2.11) and (2.12)

aw~ 1 [ { 1- Xo }]W~VI = --- b +(1- Xo- b) log .
b+a 2(b+a) 1-xo-b

Then, from (2.8), (2.9), (2.12) and (2.13)

2 -aw~ 1 [ {l-Xo}]wf(x)= +2( ) x-xo+(1+x-2xo+2a)log -- ,
x-xo+a x-xo+a I-x

(2.12)

(2.13)

(2.14).

2h ( ) _ aw~w I x -
xo-x+a

1 [ { 1- Xo }]
2( )

Xo - x +(1 +x - 2xo)log 1 2 .
xo-x+a +x- Xo

(2.15)

Provided that the discontinuity at xo - b has not previously reached the fixed end x = -1,
the discontinuity at xo +a vanishes when VI = V2. We note that VI decreases from its initial
value one, and V2 increases from its initial value zero, and V2'" 00 as a'" 1- xci. Hence, VI = V2
for some value at of a, such that at < 1- Xo; that is, the discontinuity at Xo +a always vanishes
before it reaches the free end x = 1. From (2.11) and (2.12), a = at is the root of

I {
1-Xo } 2aw~-a

og =
1- Xo - a 2a + 1+a - xo'

Some numerical values of at are given in Table 1.

Table I. Values of at for Xo =0.2

~, ,.I '.2 'J

0.1 0.092 0.082 0.074 0.068
0.2 0.170 0.154 0.140 0.130
0.3 0.236 0.216 0.200 0.184
0.4 0.296 0.272 0.252 0.234

(2.16)
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As the two discontinuities travel at the same speed, the discontinuity at Xo + a vanishes before
the one at Xo - b reaches the fixed end provided that

af < 1+xo. (2.17)

Since af < 1- Xo, this condition is certainly satisfied if Xo> O. The case af > 1+Xo appears to
have little interest, and henceforth it is assumed that the condition (2.17) is satisfied. The
solution given by (2.12) and (2.13) then holds for 0~ wt ~ (3af. Correspondingly the expressions
(2.14) and (2.15) give the slope of the beam in the ranges Xo < x < Xo +af and xo - af < x < Xo
respectively.

The deflection Lu(x, t) of the beam is given by

U(x, t) = Ly(x, t) dx.

Thus, in this stage of the deformation

(2.18)

u =0,

to t
u = Jxo-b h1(x) dx + J

xo
!(x) dx,

i
xo Lxo+au)

U= h1(x) dx + lex) dx,
xo-b Xo

-1 <x<xo-b(t),

xo- b(t)<x < XO,

xo<x <xo+ a(t),

xo+ a(t) <x < 1.

(2.19)

(2.20)

(2.21)

(2.22)

The integrals cannot be evaluated as standard functions, although they can be expressed in
terms of the dilogarithm function

F(z) = - f ~-llog (1-~) d~

which has been tabulated by Mitchell [4]. Approximate analytical expressions for u in the case
w{3 <l!: 1 are given in Section 4.

3. SOLUTION FOR fJaf <wI<fJ(I +xol

Provided that the condition (2.17) is satisfied, the first stage of the deformation terminates at
t =(3aftw. Subsequently the discontinuity at Xo - b continues to propagate to the left, with the
segment -1 < x < Xo - b(t) at rest, and the segment Xo - b(t) < x < 1moving as a rigid body with
speed vYo. The configuration is illustrated in Fig. 3, and the trajectories of the discontinuities in
the (x, t) plane are shown in Fig. 2. We again denote y = h1(x) in Xo - b < x < xo.

Then the governing equations are as follows:
(a) Equation of motion of xo-b(t)<x<l:

y

(3.1)

o :x:

Fig. 3. Impact of a cantilever beam. Assumed form of deformation for fJaf < wI < 13(1 + xol.
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(b) Jump condition at xo- b(t):
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(3.2)

together with the relation b =6JtlfJ, and the condition that v = VI = V2 at t = fJat!6J, or b = af.
Adding (3.1) and (3.2) gives

2 d
fJ dt {(l-xo+ b +2a)v} =-1. (3.3)

It remains convenient to use b as the independent variable. By integrating (3.3), inserting the
condition at b = af, and using (2.16), we obtain

6JfJv = 2a6JfJ - b .
2a+l+b-xo

Hence, from (3.2), for Xo - b < x < Xo - af

2h ( )_2a6JfJ -xo+x
6J I x - 2 1 .a+ -x

(3.4)

(3.5)

The deflection is still given by (2.19) - (2.22), but now a has the constant value af, and hl(x)
takes the form (3.5) in Xo - b < x < Xo - af, and the form (2.15) in Xo - af < x < xo. The ex
pressions for u are again complicated, and approximate expressions are given in Section 4.

This stage of the deformation terminates when either (a) v = 0, and the beam comes to rest,
or (b) b = 1+xo, and the discontinuity reaches the fixed end. In case (a), from (3.4), the beam
comes to rest when

b = 2a6JfJ. (3.6)

Thus the condition for the deformation to be completed before the discontinuity reaches the
fixed end is

2a6JfJ < 1+xo. (3.7)

If (3.7) is satisfied, the deformation terminates when b has the value (3.6) and t = 2afJ2.
Then v is given by (3.4) for af < b < 2a6JfJ, and hl(x) by (3.5) for Xo - 2a6JfJ < x < Xo - af. The
deflection is given by (2.19H2.22). As an illustration, the final deflection, when the beam comes
to rest, is shown in Fig. 4 for a =0.2 and several values of a6JfJ.

If (3.7) is not satisfied, then (3.4) applies for af < b < 1+Xo, and (3.5) for -1 < x <

·2

-1 -·8 ··6 ·8 1.0 :x
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Fig. 4. Final deflection of a cantilever beam for .to =0.2, a =0.2.
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Xo - af. Subsequently, for wi > f3( I + xo), further deformation takes place, and this IS

considered in Section 5.

4. SOLUTION FOR Ulj3~1

As in the problems considered in Parts I and II, some simplification arises when wfJ « 1. If
wf3 « I, the condition (3.7) is satisfied except possibly when I +Xo « I, so that the impact is
close to the fixed end, or when a is> I, which is the case of a heavy striker. We exclude these
two cases and assume that (3.7) is satisfied. The deformation is then complete before the
discontinuity reaches the fixed end of the beam.

From (2.16), to first order in wf3,

wf3a(l- xo)
af= .

a +1- xo
(4.1)

Thus, under the stated assumptions, a ~ af « I. Hence, from (2.12H2.15) and (4.1), to first
order in wf3,

wf3V2=_b, 11- Xo

wf3a - b
wf3vl = b '+a

w2f(x) = wf3a(x - Xo - af),
af(x - Xo+ a)

2h ( ) _ wf3a - Xo +X
W I X - ,

xo-x+a

Xo < X< Xo + af,

Xo - af < X< XO.

(4.2)

(4.3)

(4.4)

Hence, from (2.19}-(2.22), the deflection for wt < f3af is given by

0,

Gb+a )a(1 +wf3) log +Xo- x - b,
o-x+a

-I < x < Xo - b(t),

Xo- b(t)<x <xo,

Gb+a ) a { (x-xo+a)}a(l + wf3) log +X-Xo- b +-1- x- xo-a log ,
-xo+a -Xo a

Xo <x < Xo+ a(t),

(4.5)

_a {b_alog(b+a)},
l-xo a

xo+ a(t) <x < l.

For wi > f3af, only slight simplification results when wf3 « 1. In this case, from (3.4), to
leading order in wf3,

Q 2awf3-b
WIIV =

2a+ I-xo'

and from (3.5), to first order in wf3,

2h ( )_2awf3 -xo+x
w I x -

2a+l-xo'
Xo - 2a{J}f3 < x < Xo - af.

(4.6)

(4.7)
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Then, from (2.19H2.22), with (4.1), (4.3), (4.4) and (4.7), the deflection is given by

85\

0, -1 <x <Xo- b(t),

xo- b(t) <x <Xo- af,
(4aw~ - Xo+ x - b)(b - Xo+ x)

2(2a +1- xo)

(4aw~-af-b)(b-af) (1 Q)I (af+a)
-'------':----=-----:'-'--.:..:.. +a +w.. og +Xo - x - at.

2(2a +1- xo) Xo - x +a

Xo - af < x < xo, (4.8)

(4aw~-af-b)(b-af) (1 I (af+a)
2(2 1 )

+a +w~) og +x-xO-af
a+ -~ ~-x+a

a { (x-xo+a)}+ 1- Xo x - Xo - a log a ' Xo < x < Xo +af,

The maximum deflection occurs at x = Xo when b = 2aw~, and is given by

2 (2aw~ - ad (af +a)
w u = 2(2a +1_ Xo) +aO +w~) log -a- - af· (4.9)

5. SOLUTION AFTER REFLECTION AT x=-\

If the condition (3.7) is not satisfied, so that 2aw~> 1+Xo, the discontinuity at x = Xo - b
reaches the fixed end x = -1 at time t = PO +xo)/w. In the subsequent motion, the discontinuity
at x = xo - b is reflected back towards the point of impact, so that at time t its position is given
by

b = 20 +xo) - (wt/P) (5.1)

for t > PO +xo)/w. The segment -1 ~ x < Xo - b is at rest, and the segment Xo - b < x < 1,
together with the attached mass, moves as a rigid body with speed Vov. We denote 'Y = h2(x) in
-1 < x < Xo - b. The value of 'Y in Xo - b < x < Xo is ht(x), which is given by (2.15) for
Xo - af < x < Xo, and by (3.5) for Xo - b < x < Xo - af' The configuration is illustrated in Fig. 5, and
the trajectories in the (x, t) plane are shown in Fig. 2.

The governing equations are now:
(a) Equation of motion of Xo - b(t) < x < 1:

(5.2)

(b) Jump condition at xo- b(t):

(5.3)

Xa+Qf :x:

Fig. 5. Impact of a cantilever beam. Form of the deformation after reflection of the discontinuity at the
fixed ends.
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The initial conditions are, from (3.4),

2awfJ - Ixo
b = 1+ xo, v = 2w{3(a _ 1)' when t = fJ(l + xo)/w.

It is again convenient to use b as the independent variable.
By integrating (5.2) subject to the initial conditions (5.4), we obtain

2awfJ -1- Xo 11
+x

O{1 +w
2
h,(xo- b)} db.

wfJv = 2(a + 1) b 1- Xo +b +2a

For 1+ Xo ~ b ~ at, (3.5) and (5.5) give

wfJv = a(2wfJ + 1) - Xo 2a(l +wfJ) +1- Xo
a +1 2a +1- Xo +b .

(5.4)

(5.5)

(5.6)

This determines v until either the beam comes to rest or b decreases to the value at. If the
beam is still in motion when b = at, then subsequently v is still given by (5.5) but eqn (2.15)
must be used for h,(xo- b) when b lies between at and zero. The resulting dpression is
complicated and is not stated explicitly.

The slope Mx) of the beam behind the first reflected discontinuity is given by (5.3). For
-1 < x < Xo - at, (3.5), (5.3) and (5.6) give

2h ( ) _ 2awfJ - (l + xo)
W2X- l'a+

(5.7)

so that the slope of the beam is constant behind the reflected discontinuity. We note that this
result is consistent with (4.14) of Part II in the case of impact at the tip of the beam, for which
xo = 1. Since h2(X) is constant, the deflection for -1 < x < Xo - b < Xo - at is easily found from
(5.7). For x > xo - band b > a" the deflection differs from that given by (4.8) only by a rigid
body displacement such that u is continuous at x = Xo - b.

For sufficiently large values of a, wand fJ, further reflections of the discontinuity will occur
alternately at x = Xo and x = -1 until the beam eventually comes to rest.

6. DISCUSSION

The theoretical model employed in this series of papers is a very idealised one, and it is
appropriate to discuss the results in relation to the assumptions made. These assumptions fall
into four categories.

(a) Rigid-plastic, time independent behaviour
This assumption has frequently been made in studies of the dynamic behaviour of isotropic

beams. Although elastic and strain-rate effects are often significant, it has been found that the
rigid-plastic theory often predicts reasonable results provided that the strains are moderately
large. It is reasonable to hope that rigid-plastic theory may have a similar degree of validity in
the problems considered here.

(b) Ideal fibre-reinforced material
The assumption that the beam is inextensible in its axial direction implies that the deflection

arises entirely through shear deformation and that the familiar flexural deformation mode
cannot occur. For elastic-plastic materials with small but finite extensibility characterised by a
Young's Modulus E and shear yield stress k, the condition for shear deformation to
predominate over flexural deformation is, for a rectangular cantilever beam of length 2L and
depth H, loaded at its tip,

(6.1)
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where 'Yo is the slope predicted by the inextensible theory. We envisage applications to
materials for which the yield stress k is very small compared to E. For validity of the theory it
is clearly desirable for 'Yo to be moderately large. For given k, E and 'Yo, (6.1) estimates the
range of depth to span ratios for which the theory may be expected to apply.

(c) Small strain and small deflection
In formulating the theory it has been assumed that the strains are small and geometry

changes can be neglected. These assumptions to some extent conflict with (a) and (b) above; the
conflict with (a) is present also in the theory for isotropic materials, In the solutions given in
these papers, the maximum value LUf of the deflection is such that

(6.2)

Thus, for the deflection to be small everywhere, it is necessary that the kinetic energy lost in
the impact is small compared to QoL.

In the solutions given here, the maximum value of 'Y occurs at the point of impact and is of
order

(6.3)

Thus, if the strain is small everywhere, it is necessary that mV02
~ QI. However, even if this

condition is violated, the solutions may be valid except in a region in the neighbourhood of the
point of impact. We note also that the maximum strain is not sensitive to the mass of the
striker, but is strongly dependent on its velocity.

A further restriction on the essentially one-dimensional theory presented here is that the
width La of the deforming segment should be large compared to the thickness of the beam.
Thus we require

H
af~

L'

(d) Mathematical approximations
For all the problems considered, solutions have been obtained which are exact within the

framework of the theory used. However, certain approximations have been used in order to
express these solutions in simpler forms. These approximations are not essential, but, when
they are valid, it is convenient to use them. Thus, in Part I, we considered the cases of a heavy
striker (a ~ 1) and a light striker (a ~ 1). The validity of these approximations is easily assessed
in particular cases. The most useful approximation which has been used is

v; 2 1/2 Q 1/2"

wp ~ 1, or (mQoO
) (Q:) ~ 1. (6.4)

The advantage of this approximation is that it enables explicit formulae for the deflection to be
obtained as, for example, in (4.5) and (4.8) of this paper. However, when (6.4) is not satisfied,
the deflection may still be found by straightforward numerical integrations. The validity of (6.4)
is also easily assessed in particular cases. The condition (6.4) rules out certain possible
deformations; for example, in the case of a supported beam it was shown in Section 3 of Part II
that wp ~ 1 implies either al ~ 1 or a ~ 1. However, the case a ~ 1 may, by (6.2), imply that the
deflections are unacceptably large. A similar point was made by a rather different argument by
Jones ([3], p. 322).

Because of the many idealisations made in formulating the theory, close quantitative
agreement between it and experiment is hardly to be expected. It would be of great interest to
make comparisons with experiments, but we know of no relevant data. At this stage it may be
more profitable to seek to draw conclusions of a more qualitative nature. Two such conclusions
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are the expressions ~Lf32vf «7.7) of Part I) and ~Laf32 (Section 3 of Part II) for the maximum
deflection of the free beam and supported beam (or cantilever struck at its tip) respectively. These
results (which are independent of the parameter n) have simple physical interpretations. If, as will
frequently be the case, Qp - Qo~ Qo, then the plastic work done in the deformation is,
approximately,

i
Xo lLWp = Qo'Y dX - Qo'Y dX =2QoLuf,

-L Xo
(6.5)

where LUf is the final deflection at Xo• Equating Wp to the kinetic energy lost in impact leads
immediately to the above expressions for Ufo Since Qp ~ Qo, (6.5) underestimates Wp, and so
this elementary argument gives upper bounds to Ufo

Another general conclusion is that, for fixed Vo, the larger the value of Qt the smaller will be
the strains and the greater the region of the beam over which the deformation is distributed.
Thus, a high rate of strain-hardening (large Qt) has the effect of absorbing the kinetic energy of
the striker as plastic work distributed along a large segment of the beam. For small Q., the
plastic work is concentrated into a small portion of the beam. In the extreme case of a perfectly
plastic solid, which arises in either of the limits Qt -+ 0 or n -+ 0, the discontinuities do not
propagate at all. Some remarks on the case of a perfectly plastic solid were made in
reference[l] of Part I.
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